
1

In this lecture, we will look at how storage (or memory) works with
processor in a computer system. This is in preparation for the next
lecture, in which we will examine how a microprocessor actually
works inside.

In the last lecture we have looked at the overall structure of a
computer, which has three main components: CPU, memory and
IO, all connected together via three buses: address bus, data bus
and control bus.
In this lecture we will look at the CPU in some detail.
A CPU has a number of modules inside. These include a arithmetic
and logic unit, a control unit and at least one, but usually many
more, registers.
Remember registers are just a bunch of D-FFs.
Modern computers and microprocessors are based on the von
Neumann model which uses memory to store both the instruction
codes (i.e. the program) and the data.
It is important to remember and understand that if you could open
the top of a memory chip and read the values stored inside the
chip, you will see ‘1’s and ‘0’s. What they mean depends on where
they are stored and the context. You cannot tell by just looking at
memory which word is an instruction word, and which word is data.
For that, we need some other information.

2

If you look inside a simple CPU, you are going to find these
modules:

PC = Program Counter – it stores the address of the NEXT
instruction to be executed

IR = Instruction Register – It stores the current instruction
binary code (called machine code) to be executed

ALU = Arithmetic/Logic Unit – It performs the actual
arithmetic or logical operations

ACC = Accumulator (or result register) – It stores the
temporary data or result

In modern CPUs, there are many other modules. For example,
instead of having only one ACC, there could be many more
temporary registers. For example, the ARM processor in the
Pyboard has 16 registers (including one for the PC). In addition to
the ALU, there is also a floating point unit (FPU) and even an
additional computational engine known as Adaptive Real-Time
Accelerator (ART).
In order for you to understand how a CPU does its job, let us now
create one that is very simple and only having the few modules
shown above.

3

This simple CPU uses instruction code that has 16-bits.
We assume that there is only 8k byte of memory and the processor
is a 16-bit processor meaning that it process data in 16-bit words.
(ARM normally process data in 32-bits or 64-bits.) Therefore the
processor memory is organised as 4k x 16 bits. 4k words require
12 address bits.
Shown here is the format of the instruction. The top 4 bits are used
to specify the operation to be performed. This is known as the
opcode.
With 4-bit opcode, we could specify 16 operations, but we will only
create 8 operations with opcode going from 0 to 7.
The remaining lower significant 12 bits in the instruction word are
used to specify the memory address for the operation if required.
We will see what that means in the next few slides.

4

Here is our simple instruction set with only 8 instructions. Here are
the explanations for all 8 instructions. These instructions are shown
as three letter code (known as mnemonics) to indicate what each
instruction is suppose to do. This is known as Assembly
Language program. However, the CPU can only understand
binary code. Therefore shown here are the opcodes for each
instructions forming the 4 most-significant bits (MSBs). Then each
instruction is followed by a 12-bit memory address S. The binary
form of the instruction is known as Machine Code program.
LDA S - Load Accumulator with the content at memory location S
STO S - Store Accumulator value to memory location S
ADD S - Add the data in memory location S to ACC and store the

result back to ACC
SUB S - Subtract the data in memory location S from ACC and

store the result back to ACC
JMP S - Jump to instruction at memory address S
JGE S - Jump to instruction at memory address S if the previous

ALU operation is greater than or equal to zero
JNE S - Same as before but for the case where the previous ALU

operation does not equal to zero
STP - Stop the processor. Since this instruction does not require

any memory address, it only uses the top 4-bits of the
instruction word

5

Now let us assume that at memory location 000 (hex) to 003,
there are already stored four instructions. Furthermore, we also
assume that in memory locations 02E and 02F (in hex again)
stores two numbers AAAA and 1111 to be added together. The
result of this addition, which is BBBB, will be stored back to
memory location 030.
Let us now see how these instructions are executed by the CPU,
one instruction at a time.

6

Firstly, we assume that we start from PC = 000, i.e. on reset, the
program counter is zeroed.
This means that the PC is pointing to address 000 in memory
where the first instruction code is stored. It is 002E, which is LDA
02E instruction, meaning that it should read the 16-bit data from
memory location 02E and stores this in the accumulator.
So in the first clock cycle, the PC is pushed out via the address
register onto the address bus. A memory read operation is
performed and the instruction code 002E is fetched and put into
the instruction register IR. This is the instruction fetch cycle.
The opcode part (top 4-bits) of the instruction is passed through
the instruction decoder unit and the CPU is ready to “execute” the
opcode by performing a data-read-from-memory operation.
This operation is done in the second clock cycle.
The bottom 12-bit of the instruction stored in IR, 02E, is now
pushed to the address register then onto the address bus. The
data stored at location 02E (which is AAAA) is read from this
memory location and stored in ACC.
Now something else ALWAYS happens. After the PC is used to
fetch an instruction, its value is ALWAYS automatically
incremented. In other words, the PC always counts up once it is
used (hence the name program counter). This is because we want
it to always point to the next instruction.

7

The second instruction is to add the previously fetch data to the
data stored in memory location 02F.
Again in the first clock cycle, the PC value is send to the address
bus, and the instruction code 202F is fetched and stored in IR as
shown.
On the next cycle, the opcode (2) is decoded by the CPU and force
an add operation to be performed. This involves the CPU sending
the lower 12-bit of the instruction code (02F) to the address bus
and performs a memory read. The data from memory 02F (i.e.
1111) is send, together with the value stored in ACC, to the ALU
and the opcode tells the ALU to do an addition. The result BBBB is
stored back to ACC.

8

In this instruction, the contents of ACC is stored to memory location
030.
Finally, the last instruction is to tell the CPU to stop. This instruction
does not involve any memory read AFTER fetching the instruction. It
therefore only use the top four bit of the instruction for opcode, and it
only takes one clock cycle. This is shown on the next slide.
To summarise
The operation of most processors are governed by a clock signal. For
this simple CPU, we assume that:
1. The number of clock cycles taken by an instruction is the same as

the number of memory access it makes.
2. LDA, STO, ADD, SUB therefore takes 2 clock cycles each: one to

fetch (and decode) the instruction, a second to fetch (and operate
on) the data

3. JMP, JGE, JNE, STP only need one memory read and therefore can
be executed in one clock cycle.

4. Program counter (PC) - its content is incremented every time it is
used (i.e. it also points to the next instruction).

5. The processor must start from a known state. Therefore, there is
always a reset signal to initialise the processor on power-up.

6. Assume MU0 will always reset to start execution from address
00016.

9

8. Microprocessors performs operations depending on instruction
codes stored in memory

9. Instruction usually has two parts:
• Opcode - determines what is to be done
• Operand - specifies where/what is the data

10. Memory contains both program and data. A peek into
memory will tell you very little except a bunch of ‘1’s and
‘0’s

11. Program area and data area in memory are usually well
separated

12. ALU is responsible for arithmetic and logic operations
13. There is always at least one register known as accumulator

where the result from ALU is stored
14. There is usually one or more general purpose register for

storing results or memory addresses temporarily
15. Fetching data from inside the CPU is much faster than from

external memory

10

The microprocessor inside the Pyboard is known as ARM Cortex-M4.
The central part of this processor is the ARM 7 CPU. However, this
ARM core (as it is called) is more than just the CPU. Surrounding
the CPU are also many other useful modules that makes the ARM
much easier to use. For example, it contains various instruments in
order to capture various data go to and from the ARM processor. It
has protection circuits and other digital circuitry to makes the
interface between the CPU and everything external to it much
easier. The most important here is the 3x AHB (Arm Higher
Perforrmance Bus) which allows the CPU to talk to the peripheral
devices that attach to it.

11

We are not only just using the ARM CPU. Instead the Pyboard has a
microcontroller as its main engine. This microntroller, the
STM32F405 is made by ST Micro, and here is a overview block
diagram for this chip.
The ARM Cortex-M4 (which has all the stuff from the last slide) ia
only a small part of the entire chip – it is shown in dark blue here.
All the light blue parts are added to the ARM core by ST Micro.
These provides many useful functions such as many timers for
control of motors and sensors, A-to-D converters and D-to-A
converters, and lots of different logic circuits to connect the
microcontroller to the outside world. (We will look at this
connectivity in two weeks, in the Lecture entitled “LINK’).
It is interesting to note that ARM does not make chips. They
provide the ARM-Cortex M4 design to ST Micro (who pays a royalty
to ARM for the IP). ST Micro then design all the other stuff around
the ARM core to make their product. ARM was the first company to
make this fabless IP business model work. It ended up with the
world using ARM processor more than they use Intel processors
because many foundries (i.e. those people who make the
semiconductor chips) can design and make products with ARM.

12

The Pyboard further add to the ST Micro chip by adding an
accelerometer, a MicroSD card reader, all sort of power regulation
and protection circuits.
This is a QuickRef Guide from MicroPython, the maker of the
Pyboard. It shows which pins on the Pyboard is used for what.
Mostof them are programmable, meaning that they have multiple
functions. We enable them for a specify function as required. For
example, in Lab 4, we used UART(6) for task 6, 7 and 8. This
involves pins Y1 and Y2. If we were not using these pins for UART,
we could program the pins to drive LEDs or one of the timer pins.
In the Team Project, you will only be using limited features on the
Pyboard and the STM microcontroller. Lab 4 provides examples to
you as to how to program the Pyboard to do things that are useful
to your design projects. Don’t worry about the rest – you can find
those out for yourself if you have time.

13

In Lab 4, you brought to the surface of the BB the Pyboard. As
soon as you plug in your computer, the Pyboard appears as a USB
memory drive. You can see a file called boot.py. This is the
program that Pyboard will first run. Inside the program is the
function call: pyb.main(‘main.py’). pyb is the library that provides
Pyboard specific functions. The function you use is pyb.main(),
which direct the Pyboard to the main program that it should then
execute.
I told you in the Lab instruction that you could change the name of
main.py to something else, such as task1.py etc.
An even better way to do this (and I got this from Benedict
Greenberg during the lab) is to do something shown on the right.
Instead of changing the main program to run in boot.py, you could
modify main.py as shown here. main.py now reads in the task
number, and then use the standard Python call execfile(file_name)
to redirect Python to run or execute another Python file.
The first line in this program prints a message on your terminal,
and wait for you to type in a number. This number is store in the
variable task.
The if-elif statement select which Python program to run. Now you
just ask taskx.py to the USB disk as you progress in the Lab. Very
elegant!

14

MicroPython is quite a large system and there are too much to
learn. It is also good if you learn to read instructions from website,
rather than just been spoon fed by me. So, go to:

http://docs.micropython.org/en/latest/pyboard/

You will see this page. There are lots of useful documents here. I
will now give you an summary of the most important ones that are
relevant to your Team Project.

15

MicroPython provides many library functions in order to make
programming this board much easier. There are basically two main
categories of library functions:
1. A subset of the standard Python library you can find everywhere

(but implemented for MicroPython). Of these, the two that you
would need are: math and sys.

2. There is a bunch of library functions that are written for the
Pyboard specifically. The two that you need are: machine and
pyb. Machine library provide top level control of the board, and
pyb provide detail control. pyb is the most important library for
you to know. Almost all functions we use so far are important
from the pyb library.

3. Within pyb, there are some that are quite generic, such as Time
(different from Timer). The functions provided by Time such as
pyb.delay() and pyb.udelay() are most useful. They provide real
time delay (quite accurate) in milliseconds and microseconds.

4. Then there is a large collection of peripheral specific libraies
(they are written as object-oriented class libraries). You will be
using many functions from this.

16

17

The pyb class libraries includes those shown here. In Lab 4, you used
the following library classes: LED, ADC, Pin (everything), Timer (these
are functions to control internal timer circuits), TimerChannel (this is a
further extension to control the timers, but at a high-level of
abstraction) and UART. I have provided examples in Lab 4 for you.
You don’t need to know all these libraries. You should learn using this
approach:
1. Learn from the example code I gave you.
2. If these do not do what you need, be clear what function you need

to perform.
3. Look for a function in the library that is likely to give you what you

needed.
4. Failing that, ask me or your friends and classmates, or your team

project supervisor.

This video explains how a CPU or a microprocessor is made. You
can find this video on youtube:

https://www.youtube.com/watch?v=qm67wbB5GmI

18

